Seen to Unseen: Exploring Compositional Generalization of Multi-Attribute Controllable Dialogue Generation

摘要

Existing controllable dialogue generation work focuses on the single-attribute control and lacks generalization capability to out-of-distribution multiple attribute combinations. In this paper, we explore the compositional generalization for multi-attribute controllable dialogue generation where a model can learn from seen attribute values and generalize to unseen combinations. We propose a prompt-based disentangled controllable dialogue generation model, DCG. It learns attribute concept composition by generating attribute-oriented prompt vectors and uses a disentanglement loss to disentangle different attributes for better generalization. Besides, we design a unified reference-free evaluation framework for multiple attributes with different levels of granularities. Experiment results on two benchmarks prove the effectiveness of our method and the evaluation metric.

会议
ACL 2023
曾伟豪
曾伟豪
硕士研究生
赵璐璐
赵璐璐
博士研究生

对话摘要生成,关系抽取

何可清
硕士研究生

对话系统,摘要,预训练

耿若彤
耿若彤
硕士研究生

摘要生成

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习