Revisit Overconfidence for OOD Detection: Reassigned Contrastive Learning with Adaptive Class-dependent Threshold

摘要

Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. A key challenge of OOD detection is the overconfidence of neural models. In this paper, we comprehensively analyze overconfidence and classify it into two perspectives: over-confident OOD and in-domain (IND). Then according to intrinsic reasons, we respectively propose a novel reassigned contrastive learning (RCL) to discriminate IND intents for over-confident OOD and an adaptive class-dependent local threshold mechanism to separate similar IND and OOD intents for over-confident IND. Experiments and analyses show the effectiveness of our proposed method for both aspects of overconfidence issues.

会议
NAACL 2022
吴亚楠
吴亚楠
硕士研究生

自然语言理解

何可清
硕士研究生

对话系统,摘要,预训练

严渊蒙
严渊蒙
硕士研究生

自然语言理解,预训练

高琪翔
高琪翔
硕士研究生

任务型对话系统,对话状态追踪

曾致远
曾致远
硕士研究生

自然语言理解,文本生成

郑馥嘉
郑馥嘉
硕士研究生

对话摘要

赵璐璐
赵璐璐
博士研究生

对话摘要生成,关系抽取

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习