Revisit Out-Of-Vocabulary Problem For Slot Filling: A Unified Contrastive Framework With Multi-Level Data Augmentations

摘要

In real dialogue scenarios, the existing slot filling model, which tends to memorize entity patterns, has a significantly reduced generalization facing Out-of-Vocabulary (OOV) problems. To address this issue, we propose an OOV robust slot filling model based on multi-level data augmentations to solve the OOV problem from both word and slot perspectives. We present a unified contrastive learning framework, which pull representations of the origin sample and augmentation samples together, to make the model resistant to OOV problems. We evaluate the performance of the model from some specific slots and carefully design test data with OOV word perturbation to further demonstrate the effectiveness of OOV words. Experiments on two datasets show that our approach outperforms the previous sota methods in terms of both OOV slots and words.

会议
ICASSP 2023
郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

董冠霆
董冠霆
硕士研究生

自然语言理解

傅大源
傅大源
硕士研究生
曾晨
曾晨
硕士研究生
回亭风
回亭风
硕士研究生
王礼文
王礼文
硕士研究生

自然语言理解及相关应用

李雪峰
李雪峰
硕士研究生

填槽,意图识别

王泽晨
王泽晨
硕士研究生
何可清
硕士研究生

对话系统,摘要,预训练

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习