Revisit input perturbation problems for llms: A unified robustness evaluation framework for noisy slot filling task

摘要

We utilize a multi-level data augmentation method (character, word, and sentence levels) to construct a candidate data pool, and carefully design two ways of automatic task demonstration construction strategies (instance-level and entity-level) with various prompt templates. Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios. The experiments have demonstrated that the current open-source LLMs generally achieve limited perturbation robustness performance. Based on these experimental observations, we make some forward-looking suggestions to fuel the research in this direction..

会议
NLPCC 2023
董冠霆
董冠霆
硕士研究生

自然语言理解

赵金旭
赵金旭
硕士研究生
回亭风
回亭风
硕士研究生
郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

公却卓玛
公却卓玛
硕士研究生
何可清
硕士研究生

对话系统,摘要,预训练

王泽晨
王泽晨
硕士研究生
徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习