PSSAT: A Perturbed Semantic Structure Awareness Transferring Method for Perturbation-Robust Slot Filling

摘要

Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aim to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.

会议
COLING 2022
董冠霆
董冠霆
硕士研究生

自然语言理解

郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

王礼文
王礼文
硕士研究生

自然语言理解及相关应用

李雪峰
李雪峰
硕士研究生

填槽,意图识别

王泽晨
王泽晨
硕士研究生
曾晨
曾晨
硕士研究生
何可清
硕士研究生

对话系统,摘要,预训练

雷浩
雷浩
硕士研究生

机器阅读理解

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习