Novel Slot Detection:A Benchmark for Discovering Unknown Slot Types in the Task-Oriented Dialogue System

摘要

Existing slot filling models can only recognize pre-defined in-domain slot types from a limited slot set. In the practical application, a reliable dialogue system should know what it does not know. In this paper, we introduce a new task, Novel Slot Detection (NSD), in the task-oriented dialogue system. NSD aims to discover unknown or out-of-domain slot types to strengthen the capability of a dialogue system based on in-domain training data. Besides, we construct two public NSD datasets propose several strong NSD baselines, and establish a benchmark for future work. Finally, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide new guidance for future directions

会议
ACL 2021
吴亚楠
吴亚楠
硕士研究生

自然语言理解

曾致远
曾致远
硕士研究生

自然语言理解,文本生成

何可清
硕士研究生

对话系统,摘要,预训练

徐红
硕士研究生

自然语言处理,意图识别

严渊蒙
严渊蒙
硕士研究生

自然语言理解,预训练

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习