Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking

摘要

Collecting dialogue data with domain-slot-value labels for dialogue state tracking (DST) could be a costly process. In this paper, we propose a novel framework based on domain-slot related description to tackle the challenge of few-shot cross-domain DST. Specifically, we design an extraction module to extract domain-slot related verbs and nouns in the dialogue. Then, we integrates them into the description, which aims to prompt the model to identify the slot information. Furthermore, we introduce a random sampling strategy to improve the domain generalization ability of the model. We utilize a pre-trained model to encode contexts and description and generates answers with an auto-regressive manner. Experimental results show that our approaches substantially outperform the existing few-shot DST methods on MultiWOZ and gain strong improvements on the slot accuracy comparing to existing slot description methods.

会议
EMNLP 2022
高琪翔
高琪翔
硕士研究生

任务型对话系统,对话状态追踪

董冠霆
董冠霆
硕士研究生

自然语言理解

牟宇滔
牟宇滔
硕士研究生

任务型对话系统,自然语言理解

王礼文
王礼文
硕士研究生

自然语言理解及相关应用

曾晨
曾晨
硕士研究生
郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习