Distribution Calibration for Out-of-Domain Detection with Bayesian Approximation

摘要

Out-of-Domain (OOD) detection is a key component in a task-oriented dialog system, which aims to identify whether a query falls outside the predefined supported intent set. Previous softmax-based detection algorithms are proved to be overconfident for OOD samples. In this paper, we analyze overconfident OOD comes from distribution uncertainty due to the mismatch between the training and test distributions, which makes the model can’t confidently make predictions thus probably causing abnormal softmax scores. We propose a Bayesian OOD detection framework to calibrate distribution uncertainty using Monte-Carlo Dropout.Our method is flexible and easily pluggable into existing softmax-based baselines and gains 33.33% OOD F1 improvements with increasing only 0.41% inference time compared to MSP. Further analyses show the effectiveness of Bayesian learning for OOD detection.

会议
COLING 2022
吴亚楠
吴亚楠
硕士研究生

自然语言理解

曾致远
曾致远
硕士研究生

自然语言理解,文本生成

何可清
硕士研究生

对话系统,摘要,预训练

牟宇滔
牟宇滔
硕士研究生

任务型对话系统,自然语言理解

王霈
王霈
硕士研究生
徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习