Disentangling Confidence Score Distribution for Out-of-Domain Intent Detection with Energy-Based Learning

摘要

Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. Traditional softmax-based confidence scores are susceptible to the overconfidence issue. In this paper, we propose a simple but strong energy-based score function to detect OOD where the energy scores of OOD samples are higher than IND samples. Further,given a small set of labeled OOD samples, we introduce an energy-based margin objective for supervised OOD detection to explicitly distinguish OOD samples from INDs. Comprehensive experiments and analysis prove our method helps disentangle confidence score distributions of IND and OOD data.

会议
EMNLP 2022 workshop
吴亚楠
吴亚楠
硕士研究生

自然语言理解

曾致远
曾致远
硕士研究生

自然语言理解,文本生成

何可清
硕士研究生

对话系统,摘要,预训练

牟宇滔
牟宇滔
硕士研究生

任务型对话系统,自然语言理解

王霈
王霈
硕士研究生
严渊蒙
严渊蒙
硕士研究生

自然语言理解,预训练

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习