DemoNSF: A Multi-task Demonstration-based Generative Framework for Noisy Slot Filling Task

摘要

Recently, prompt-based generative frameworks have shown impressive capabilities in sequence labeling tasks. However, in practical dialogue scenarios, relying solely on simplistic templates and traditional corpora presents a challenge for these methods in generalizing to unknown input perturbations. To address this gap, we propose a multi-task demonstration based generative framework for noisy slot filling, named DemoNSF. Specifically, we introduce three noisy auxiliary tasks, namely noisy recovery (NR), random mask (RM), and hybrid discrimination (HD), to implicitly capture semantic structural information of input perturbations at different granularities. In the downstream main task, we design a noisy demonstration construction strategy for the generative framework, which explicitly incorporates task-specific information and perturbed distribution during training and inference. Experiments on two benchmarks demonstrate that DemoNSF outperforms all baseline methods and achieves strong generalization. Further analysis provides empirical guidance for the practical application of generative frameworks.

会议
EMNLP 2023
董冠霆
董冠霆
硕士研究生

自然语言理解

回亭风
回亭风
硕士研究生
公却卓玛
公却卓玛
硕士研究生
赵金旭
赵金旭
硕士研究生
郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

何可清
硕士研究生

对话系统,摘要,预训练

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习