APP:Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection

摘要

Detecting out-of-domain (OOD) intents from user queries is essential for a task-oriented dialogue system. Previous OOD detection studies generally work on the assumption that plenty of labeled IND intents exist. In this paper, we focus on a more practical few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data that may belong to IND or OOD. The new scenario carries two key challenges: learning discriminative representations using limited IND data and leveraging unlabeled mixed data. Therefore, we propose an adaptive prototypical pseudo-labeling (APP) method for few-shot OOD detection, including a prototypical OOD detection framework (ProtoOOD) to facilitate low-resource OOD detection using limited IND data, and an adaptive pseudo-labeling method to produce high-quality pseudo OOD&IND labels. Extensive experiments and analysis demonstrate the effectiveness of our method for few-shot OOD detection.

会议
EMNLP 2023
王霈
王霈
硕士研究生
何可清
硕士研究生

对话系统,摘要,预训练

牟宇滔
牟宇滔
硕士研究生

任务型对话系统,自然语言理解

宋晓帅
宋晓帅
硕士研究生
吴亚楠
吴亚楠
硕士研究生

自然语言理解

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习