Adversarial Semantic Decoupling for Recognizing Open-Vocabulary Slots

摘要

Open-vocabulary slots, such as file name, album name, or schedule title, significantly degrade the performance of neural-based slot filling models since these slots can take on values from a virtually unlimited set and have no semantic restriction nor a length limit. In this paper, we propose a robust adversarial model-agnostic slot filling method that explicitly decouples local semantics inherent in open-vocabulary slot words from the global context. We aim to depart entangled contextual semantics and focus more on the holistic context at the level of the whole sentence. Experiments on two public datasets show that our method consistently outperforms other methods with a statistically significant margin on all the open-vocabulary slots without deteriorating the performance of normal slots.

会议
EMNLP 2020
严渊蒙
严渊蒙
硕士研究生

自然语言理解,预训练

何可清
硕士研究生

对话系统,摘要,预训练

徐红
硕士研究生

自然语言处理,意图识别

刘思宏
硕士研究生

对话系统,策略学习

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习