Adversarial Generative Distance-Based Classifier for Robust Out-of-Domain Detection

摘要

Detecting out-of-domain (OOD) intents is critical in a task-oriented dialog system. Existing methods rely heavily on extensive manually labeled OOD samples and lack robustness. In this paper, we propose an efficient adversarial attack mechanism to augment hard OOD samples and design a novel generative distance-based classifier to detect OOD samples instead of a traditional threshold-based discriminator classifier. Experiments on two public benchmark datasets show that our method can consistently outperform the baselines with a statistically significant margin.

会议
ICASSP 2021
曾致远
曾致远
硕士研究生

自然语言理解,文本生成

徐红
硕士研究生

自然语言处理,意图识别

何可清
硕士研究生

对话系统,摘要,预训练

严渊蒙
严渊蒙
硕士研究生

自然语言理解,预训练

刘思宏
硕士研究生

对话系统,策略学习

刘子君
刘子君
硕士研究生

任务导向型对话系统

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习