A Prototypical Semantic Decoupling Method via Joint Contrastive Learning for Few-Shot Named Entity Recognition

摘要

Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances. Most existing prototype-based sequence labeling models tend to memorize entity mentions which would be easily confused by close prototypes. In this paper, we proposed a Prototypical Semantic Decoupling method via joint Contrastive learning (PSDC) for few-shot NER. Specifically, we decouple class-specific prototypes and contextual semantic prototypes by two masking strategies to lead the model to focus on two different semantic information for inference. Besides, we further introduce joint contrastive learning objectives to better integrate two kinds of decoupling information and prevent semantic collapse. Experimental results on two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the previous SOTA methods in terms of overall performance. Extensive analysis further validates the effectiveness and generalization of PSDC.

会议
ICASSP 2023
董冠霆
董冠霆
硕士研究生

自然语言理解

王泽晨
王泽晨
硕士研究生
王礼文
王礼文
硕士研究生

自然语言理解及相关应用

郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

傅大源
傅大源
硕士研究生
曾晨
曾晨
硕士研究生
李雪峰
李雪峰
硕士研究生

填槽,意图识别

回亭风
回亭风
硕士研究生
何可清
硕士研究生

对话系统,摘要,预训练

高琪翔
高琪翔
硕士研究生

任务型对话系统,对话状态追踪

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习