A multi-task semantic decomposition framework with task-specific pre-training for few-shot ner

摘要

The objective of few-shot named entity recognition is to identify named entities with limited labeled instances. Previous works have primarily focused on optimizing the traditional token-wise classification framework, while neglecting the exploration of information based on NER data characteristics. To address this issue, we propose a Multi-Task Semantic Decomposition Framework via Joint Task-specific Pre-training (MSDP) for few-shot NER. Drawing inspiration from demonstration-based and contrastive learning, we introduce two novel pre-training tasks: Demonstration-based Masked Language Modeling (MLM) and Class Contrastive Discrimination. These tasks effectively incorporate entity boundary information and enhance entity representation in Pre-trained Language Models (PLMs). In the downstream main task, we introduce a multi-task joint optimization framework with the semantic decomposing method, which facilitates the model to integrate two different semantic information for entity classification. Experimental results of two few-shot NER benchmarks demonstrate that MSDP consistently outperforms strong baselines by a large margin. Extensive analyses validate the effectiveness and generalization of MSDP.

会议
CIKM 2023
董冠霆
董冠霆
硕士研究生

自然语言理解

王泽晨
王泽晨
硕士研究生
赵金旭
赵金旭
硕士研究生
郭岱驰
郭岱驰
硕士研究生

去偏,分类不平衡

傅大源
傅大源
硕士研究生
回亭风
回亭风
硕士研究生
曾晨
曾晨
硕士研究生
何可清
硕士研究生

对话系统,摘要,预训练

李雪峰
李雪峰
硕士研究生

填槽,意图识别

王礼文
王礼文
硕士研究生

自然语言理解及相关应用

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习