A Deep Generative Distance-Based Classifier for Out-of-Domain Detection with Mahalanobis Space

摘要

Detecting out-of-domain (OOD) input intents is critical in the task-oriented dialog system. Different from most existing methods that rely heavily on manually labeled OOD samples, we focus on the unsupervised OOD detection scenario where there are no labeled OOD samples except for labeled in-domain data. In this paper, we propose a simple but strong generative distance based classifier to detect OOD samples. We estimate the class-conditional distribution on feature spaces of DNNs via Gaussian discriminant analysis (GDA) to avoid over-confidence problems. And we use two distance functions, Euclidean and Mahalanobis distances, to measure the confidence score of whether a test sample belongs to OOD. Experiments on four benchmark datasets show that our method can consistently outperform the baselines.

会议
COLING 2020
徐红
硕士研究生

自然语言处理,意图识别

何可清
硕士研究生

对话系统,摘要,预训练

严渊蒙
严渊蒙
硕士研究生

自然语言理解,预训练

刘思宏
硕士研究生

对话系统,策略学习

刘子君
刘子君
硕士研究生

任务导向型对话系统

徐蔚然
徐蔚然
副教授,硕士生导师,博士生导师

信息检索,模式识别,机器学习