PreAct:Predicting Future in ReAct Enhances Agent's Planning Ability

Abstract

Addressing the discrepancies between predictions and actual outcomes often aids individuals in expanding their thought processes and engaging in reflection, thereby facilitating reasoning in the correct direction. In this paper, we introduce PreAct, an agent framework that integrates prediction with reasoning and action. Leveraging the information provided by predictions, a large language model (LLM) based agent can offer more diversified and strategically oriented reasoning, which in turn leads to more effective actions that help the agent complete complex tasks. Our experiments demonstrate that PreAct outperforms the ReAct approach in accomplishing complex tasks and that PreAct can be co-enhanced when combined with Reflexion methods. We prompt the model with different numbers of historical predictions and find that historical predictions have a sustained positive effect on LLM planning. The differences in single-step reasoning between PreAct and ReAct show that PreAct indeed offers advantages in terms of diversity and strategic directivity over ReAct.

Dayuan Fu
Dayuan Fu
Postgraduate Student
Guanting Dong
Guanting Dong
Postgraduate Student

Spoken Language Understading and related applications

Yejie Wang
Yejie Wang
Postgraduate Student
Keqing He
Postgraduate Student

Dialogue System, Summarization, Pre-training Language Model

Weiran Xu
Weiran Xu
Associate Professor, Master Supervisor, Ph.D Supervisor

Information Retrieval, Pattern Recognition, Machine Learning