Learning to Tag OOV Tokens by Integrating Contextual Representation and Background Knowledge

Abstract

Neural-based context-aware models for slot tagging have achieved state-of-the-art performance. However, the presence of OOV(out-of-vocab) words significantly degrades the performance of neural-based models, especially in a few-shot scenario. In this paper, we propose a novel knowledge-enhanced slot tagging model to integrate contextual representation of input text and the large-scale lexical background knowledge. Besides, we use multi-level graph attention to explicitly model lexical relations. The experiments show that our proposed knowledge integration mechanism achieves consistent improvements across settings with different sizes of training data on two public benchmark datasets.

Publication
ACL 2020
Keqing He
Postgraduate Student

Dialogue System, Summarization, Pre-training Language Model

Yuanmeng Yan
Yuanmeng Yan
Postgraduate Student

Spoken Language Understanding, Pre-training Language Model

Weiran Xu
Weiran Xu
Associate Professor, Master Supervisor, Ph.D Supervisor

Information Retrieval, Pattern Recognition, Machine Learning