Bridge to Target Domain by Prototypical Contrastive Learning and Label Confusion:Re-explore Zero-Shot Learning for Slot Filling

Abstract

Zero-shot cross-domain slot filling alleviates the data dependence in the case of data scarcity in the target domain, which has aroused extensive research. However, as most of the existing methods do not achieve effective knowledge transfer to the target domain, they just fit the distribution of the seen slot and show poor performance on unseen slot in the target domain. To solve this, we propose a novel approach based on prototypical contrastive learning with a dynamic label confusion strategy for zero-shot slot filling. The prototypical contrastive learning aims to reconstruct the semantic constraints of labels, and we introduce the label confusion strategy to establish the label dependence between the source domains and the target domain on-the-fly. Experimental results show that our model achieves significant improvement on the unseen slots, while also set new state-of-the-arts on slot filling task.

Publication
EMNLP 2021
Liwen Wang
Liwen Wang
Postgraduate Student

Spoken Language Understading and related applications

Xuefeng Li
Xuefeng Li
Postgraduate Student

Slot Filling, Intent Detection

Keqing He
Postgraduate Student

Dialogue System, Summarization, Pre-training Language Model

Yuanmeng Yan
Yuanmeng Yan
Postgraduate Student

Spoken Language Understanding, Pre-training Language Model

Weiran Xu
Weiran Xu
Associate Professor, Master Supervisor, Ph.D Supervisor

Information Retrieval, Pattern Recognition, Machine Learning